Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424324

ABSTRACT

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Transforming Growth Factor beta1 , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Drosophila , Extracellular Matrix/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics
2.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37575021

ABSTRACT

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Microglia , Synapses , Disease Models, Animal , Amyloid beta-Peptides/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
3.
Nat Neurosci ; 26(3): 406-415, 2023 03.
Article in English | MEDLINE | ID: mdl-36747024

ABSTRACT

Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-ß oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Microglia/metabolism , Osteopontin/metabolism , Phagocytes/metabolism , Macrophages/metabolism , Phagocytosis , Disease Models, Animal , Amyloid beta-Peptides/metabolism
4.
Dev Neurobiol ; 81(5): 507-523, 2021 07.
Article in English | MEDLINE | ID: mdl-32757416

ABSTRACT

Genetic data implicate microglia as central players in brain health and disease, urging the need to better understand what microglia do in the brain. Microglia are critical partners in neuronal wiring and function during development and disease. Emerging literature suggests that microglia have diverse functional roles, raising the intriguing question of which functions of microglia become impaired in disease to undermine proper neuronal function. It is also becoming increasingly clear that microglia exist in heterogeneous cell states. Microglial cell states appear context-dependent, that is, age, sex, location, and health of their microenvironment; these are further influenced by external signaling factors including gut microbiota and lipid metabolites. These data altogether suggest that microglia exist in functional clusters that impact, and are impacted by, surrounding neuronal microenvironment. However, we still lack understanding of how we can translate microglia cell states into function. Here, we summarize the state-of-the-art on the diverse functions of microglia in relation to neuronal health. Then, we discuss heterogeneity during developing, healthy adult and diseased brains, and whether this may be predetermined by origin and/or regulated by local milieu. Finally, we propose that it is critical to gain high-resolution functional discernment into microglia-neuron interactions while preserving the spatial architecture of the tissue. Such insight will reveal specific targets for biomarker and therapeutic development toward microglia-neuron crosstalk in disease.


Subject(s)
Microglia , Neurons , Brain/metabolism , Microglia/physiology , Neurons/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...